Home » Uncategorized » Short-selling in the Tails

Short-selling in the Tails

Short selling is defined as the sale of a security that is not owned by the seller. Although the practice is fairly straightforward yielding payoffs that are linear in the price of the underlying asset, short sellers are usually sophisticated agents whose aggregate behavior can have potentially complex outcomes. In fact, short selling an asset should put downward pressure on its price helping demand meet supply. However, there is reason to believe that large and simultaneous short positions can have nonlinear effects and propel price plummets.

Short selling has been amply studied in recent years by academics who have converged around the consensus that this market practice has mostly positive effects, by providing liquidity, increasing market efficiency, and aiding price discovery. Nonetheless, regulators around the world decided to prohibit it during the 2008 financial crisis motivating their decision by remarking that during exceptional circumstances of heavy market bear, prices are more vulnerable to (potentially predatory) short selling that can exacerbate downfalls, and even lead to crashes.

This policy behaviour presupposes there are nonlinear effects in the relationship between short selling and stock prices that trigger during extreme scenarios. Most studies have assessed the average impact of short selling and have evidenced no particular tendency for it to bring down prices. However, in order to understand if SEC’s decision to ban short selling were justified, it would be interesting to understand how the relationship between short selling and stock prices changes during extraordinary scenarios, i.e. tail events.

Short selling and the occurrence of extreme events

On purely theoretical grounds, “predatory” short selling can induce institutions that are close to their capital constraints to initiate fire sales causing prices to plummet (see Brunnermeier and Oehmke, 2013 for the mathematical formulation of this problem). The effect is worsen if short sellers are able to coordinate, enlarging the so-called “doomed” region, thus requiring a smaller initial drop in returns to trigger complete liquidation of the firm’s assets.

However, empirical evidence of this phenomena from the literature is somewhat mixed. A strand of papers opts for examining stock returns during different short selling regimes. Bris, Goetzmann and Zhu (2007) find that in markets where short selling is either prohibited or not practiced stocks tend to have less negative returns. According to Saffi and Sigurdsson (2011) however, this is actually due to more overpricing occurring and not to less extreme negative returns.

Other studies have exploited actual trade data but have not been any more elucidating of the effect of short selling. Shkilko, Van Ness and Van Ness (2012) study intraday price reversals and find that short sellers exacerbate declines but to a lesser extent than long sellers. Quite to the contrary, Beohmer and Wu (2013) find that short sellers act as liquidity providers during transient price turnarounds, buying when prices drop and selling when prices jump unusually high. This is evidence that short sellers trade on the basis of superior information rather than speculation. These contrasting results might be influenced by the selection criteria of price reversal episodes.

Debunking Tail Correlation in short selling and stock price

In a new joint work with Tomas Garbaravičius (Banks of Lithuania) and David Veredas (ECARES, Université Libre de Bruxelles), we employ a methodology that accounts for all observations to estimate the association between short selling activity and stock prices during extreme (tail) events.

The study makes use of a commercially available dataset on securities lending that provides a daily proxy for short interest: the percentage of shares outstanding that are sold short. While most prior studies employed monthly or bi-monthly short interest information (that cannot capture fine grain changes in short sellers’ positions), we use the daily number of shares on loan to track changes in covered short sales.

The empirical investigation is conducted for over 6 years of data on banks and insurance companies that are the constituents of the STOXX Europe 600 and STOXX North America 600 indices. A first look at the linear correlations given in Figure 1 confirms the strikingly low association between short selling and stock prices on average.


Figure 1: Linear correlation between short interest on the stocks of financial institutions and the returns on those very same stocks

However, a descriptive analysis of the conditional tail frequencies indicates that a strong relationship is more likely when the two variables, stock price and short interest, take on extreme values.

Figure 2 shows the median conditional tail frequencies of short interest changes (ΔSI) and returns (r). These are the empirical probabilities of observing one variable in its tail given that the other variable is also in its tail.


Figure 2: Conditional tail frequencies between stock returns and the change in short interest

Days with extremely high short selling on stocks (i.e., short interest movements larger than two standard deviations from the mean) of European banks, had a probability of witnessing extremely low returns of 7.8%. This was found to be substantially higher than the probability of observing extremely high returns on days of extremely high short selling (only 2.7%). Moreover, this is also much higher than the corresponding conditional probability for two normal random variables with the same correlation as that observed in the data (shown in lighter colour). The latter means that fat tails and asymmetry characterize the relationship between short selling and stock prices. The same patterns were found for the stocks of North American banks and, to a lesser extent for those of European insurance companies.

In order to quantify and differentiate the relation that occurs during exceptional circumstances from the relation during average days, we make use of a novel measure of tail correlation. The TailCoR, developed by Ricci and Veredas (2012), can uncover a relationship between short selling and stock price changes when both variables are at the extremes of their distribution. Moreover, the TailCoR can be implemented under general and mild assumptions, as it does not depend on specific distributional assumptions, and does not require any optimisations.


Figure 3: Southeast TailCoR measures the association between extreme positive movements in short interest and extreme contemporaneous negative returns.

We adopted a variant of TailCoR called Southeast TailCoR to measure the association between extreme negative price movements and extreme positive changes in short interest (that can be linked to aggressive changes in short positions). It was found that southeast TailCoR was larger than any other variant of TailCoR (e.g. that associated with negative returns and negative short selling) evidencing that large short selling movements are associated with large downward falls in stock prices.

Among the different sectors analysed, European insurers were found to have the largest southeast TailCoR followed by North American and European banks. We find two reasons for this. First, as can be noticed in Figure 3, larger firms tend to have a smaller tail correlation between short interest and returns. As explained in Beber and Pagano (2013) and in Glosten and Harris (1988), small-cap stocks have generally lower stock liquidity, which can induce larger price effects of short selling. Since European insurers represent the smallest firms in our sample, this effect is particularly pronounced for this group. Secondly, most insurance companies were not included in bans that were introduced in 2008 because regulators in Europe mainly targeted the banking sector. Thus, smaller market capitalisation and weaker regulatory attention might therefore explain the stronger tail association observed for European insurance firms.

Conclusions and policy implications

In conclusion, we provide novel evidence of a strong negative relation at the tails of short selling and stock prices implying that large short positions are related to extreme downfalls in prices. Moreover, a more in depth analysis reveals that the association is even stronger for small cap firms.

Further results in the paper show that the relation has varied through time. In particular, short selling bans did not decrease the vicious relationship uncovered. Rather, a lower level of tail association has been witnessed during the last few years when policies aimed at curbing abusive short selling have been applied in the US and in Europe.


Beber, Alessandro, and Marco Pagano. "Short‐Selling Bans Around the World: Evidence from the 2007–09 Crisis." The Journal of Finance 68.1 (2013): 343-381.

Boehmer, Ekkehart, and Juan Julie Wu. "Short selling and the price discovery process." Review of Financial Studies 26.2 (2013): 287-322.

Bris, Arturo, William N. Goetzmann, and Ning Zhu. "Efficiency and the bear: Short sales and markets around the world." The Journal of Finance 62.3 (2007): 1029-1079.

Brunnermeier, Markus K., and Martin Oehmke. "Predatory Short selling*." Review of Finance (2013): rft043.

Glosten, Lawrence R., and Lawrence E. Harris. "Estimating the components of the bid/ask spread." Journal of financial Economics 21.1 (1988): 123-142.

Saffi, Pedro AC, and Kari Sigurdsson. "Price efficiency and short selling." Review of Financial Studies 24.3 (2011): 821-852.

Shkilko, Andriy, Bonnie Van Ness, and Robert Van Ness. "Short selling and intraday price pressures." Financial Management 41.2 (2012): 345-370.

Post a Comment

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>